Blow up of Solutions for a System of Nonlinear Higher-order Kirchhoff-type Equations

نویسنده

  • Erhan Pişkin
چکیده

In this work, we consider the initial boundary value problem for the Kirchhoff-type equations with damping and source terms  utt +M (∫ Ω ∣∣∣(−△)m2 u∣∣∣2 dx) (−△) u+ |ut| ut = f1 (u, v) , vtt +M (∫ Ω ∣∣∣(−△)m2 v∣∣∣2 dx) (−△) v + |vt| vt = f2 (u, v) in a bounded domain. We prove the blow up of the solution with positive initial energy by using the technique of [26] with a modification in the energy functional due to the different nature of problems. This improves earlier results in the literature [3, 9, 13, 21].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents

In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.

متن کامل

A blow-up result for a higher-order nonlinear Kirchhoff-type hyperbolic equation

In this work we consider a multi-dimensional higher-order Kirchhoff-type wave equation, with Dirichlet boundary conditions. We establish a blow-up result for certain solutions with positive initial energy. c © 2006 Elsevier Ltd. All rights reserved.

متن کامل

BLOW-UP AND NONGLOBAL SOLUTION FOR A FAMILY OF NONLINEAR HIGHER-ORDER EVOLUTION PROBLEM

In this paper we consider a kind of higher-order evolution equation as^{kt^{k} + ^{k&minus1}u/t^{k&minus1} +• • •+ut &minus{delta}u= f (u, {delta}u,x). For this equation, we investigate nonglobal solution, blow-up in finite time and instantaneous blow-up under some assumption on k, f and initial data. In this paper we employ the Test function method, the eneralized convexity method an...

متن کامل

Blow-up of solutions to a class of Kirchhoff equations with strong damping and nonlinear dissipation

and many authors have studied the existence and uniqueness of global solution, the blowup of the solution (see [–] and the references therein). WhenM is not a constant function, equation (.)without the damping and source terms is often called a Kirchhoff-type wave equation; it has first been introduced by Kirchhoff [] in order to describe the nonlinear vibrations of an elastic string. When...

متن کامل

On a class of Kirchhoff type systems with nonlinear boundary condition

A class of Kirchhoff type systems with nonlinear boundary conditions considered in this paper. By using the method of Nehari manifold, it is proved that the system possesses two nontrivial nonnegative solutions if the parameters are small enough.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014